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Abstract—Mobile Crowd Sensing (MCS) is a promising
paradigm that leverages mobile users and their smart portable
devices to perform various real-world tasks. However, due to
budget constraints and the inaccessibility of certain areas, Sparse
MCS has emerged as a more practical alternative, collecting
data from a limited number of target subareas and utilizing
inference algorithms to complete the full sensing map. While
existing approaches typically assume a time-discrete setting
with data remaining constant within each sensing cycle, this
simplification can introduce significant errors, especially when
dealing with long cycles, as real-world sensing data often changes
continuously. In this paper, we go from fine-grained completion,
i.e., the subdivision of sensing cycles into minimal time units,
towards a more accurate, time-continuous completion. We first
introduce Deep Matrix Factorization (DMF) as a neural network-
enabled framework and enhance it with a Recurrent Neural
Network (RNN-DMF) to capture temporal correlations in these
finer time slices. To further deal with the continuous data,
we propose TIME-DMF, which captures temporal information
across unequal intervals, enabling time-continuous completion.
Additionally, we present the Query-Generate (Q-G) strategy
within TIME-DMF to model the infinite states of continuous
data. Extensive experiments across five types of sensing tasks
demonstrate the effectiveness of our models and the advantages
of time-continuous completion.

Index Terms—Mobile CrowdSensing, data inference, fine-
grained completion, continuous time.

I. INTRODUCTION

Ith the evolution of information society and the
Wincreasing portability of wireless devices, Mobile
CrowdSensing (MCS) [1]], [2] has recently emerged as a
promising paradigm of data collection. Typically, it recruits
a large number of users equipped with mobile devices to
collect data from specific sensing areas at particular time.
Due to budget constraints and presence of unreachable sensing
data, traditional MCS can only collect incomplete or even
sparse data in most cases. To this end, a modified paradigm
called Sparse MCS [3]] is proposed, which introduces inference
strategies to complete the full sensing data from the partial ob-
servations. Sparse MCS has already shown great advantages in
some practical applications, such as the air quality monitoring
[4]], [5]l, traffic control [6]], [7] and urban sensing [8]], [9].
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Fig. 1: Time-continuous and time-discrete sensing data in
Sparse MCS.

In Sparse MCS, data inference is the most essential part and
has therefore received considerable attention. To reduce cost
and simplify inference process, most of existing works study
the data inference problem from a time-discrete perspective
[I0]-[15). For example, in Fig. [T} a requester would like
to analyze urban traffic for a period. Upon receiving the
task, existing works typically discretize the time period into
units and aggregate the sensed data within each unit. Then,
by assuming that the sensed data remains constant within
each time unit, they use the data inference methods, such as
compressive sensing [12], [16] or matrix completion [17], [|18]]
to infer the missing data. However, in practical scenario, the
sensing data changes continuously over time. Previous time-
discrete approaches may cause significant errors on practical
applications that are sensitive to change. For example, temper-
ature or wind speed may fluctuates greatly within a short time
due to severe weathers and the rough time-discrete method
may fail to capture this dramatic local changes. Therefore,
time-continuous data inference has become a crucial issue that
urgently needs addressing for Sparse MCS.

In this paper, we adopt a time-continuous perspective,
moving away from the traditional method of discretizing time
into fixed units. This shift eliminates the assumption that
data remains constant within a specific period, making it
impossible to aggregate observed data within each time unit to
reduce matrix sparsity. Consequently, our first challenge is to
handle the extremely sparse data matrix. Additionally, in time-
continuous scenarios, data is collected in real-time, leading to
unequal lengths between sensed data intervals, which affects
the relationships between consecutive data points. Thus, our
second challenge is to model and utilize these unequal in-
tervals effectively, maximizing the temporal information for
accurate data inference. Finally, while time-discrete methods
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Fig. 2: Time-discrete and time-continuous formulation.

could represent the problem with a fixed-size matrix, they
cannot infer the continuously changing data at every moment.
This leads to our third challenge: how to complete the data
from a continuous perspective, ensuring comprehensive data
inference across all moments. To tackle the challenges inherent
in time-continuous data completion, we introduce a compre-
hensive approach that begins by reformulating the problem
and progresses to designing a method that addresses these
challenges effectively. We start with fine-grained completion,
which serves as an intermediary between traditional time-
discrete methods and our final goal of continuous comple-
tion. Unlike traditional time-discrete completion, which uses
predefined unit lengths to discretize the timeline, fine-grained
inference divides the timeline based on the actual distribution
of submissions, ensuring that each time unit contains only one
submission. This adjustment eliminates the need to assume
data remains constant within each time unit, thereby offering
a more accurate model. However, this approach significantly
reduces the data volume in each unit, leading to an extremely
sparse spatiotemporal matrix (i.e., our first challenge). To
address this, we introduce Recurrent Neural Network-enabled
Deep Matrix Factorization (RNN-DMF), a neural network-
based framework for data completion that also incorporates
a temporal encoder to fully leverage previously hidden infor-
mation, addressing the challenge of sparsity.

Moving beyond fine-grained completion, we recognize that
it still does not fully capture the continuous nature of time. In
time-continuous scenarios, we avoid discretizing the timeline
entirely and handle each submission directly, preserving the
precise arrival times and intervals between submissions—our
second challenge. To leverage this additional temporal infor-
mation, we introduce Time Gates-enhanced Deep Matrix Fac-
torization (TIME-DMF), which further captures the temporal
dynamics within intervals through the use of time gates and
a more sophisticated propagation pattern. Finally, addressing
the challenge of representing the infinite number of moments
within a period, we propose the Query-Generate (Q-G) strat-
egy, which works in conjunction with TIME-DMF to model
any moment on the timeline, thus providing a comprehensive
solution to time-continuous data completion.

Our work has the following contributions:

o We reformulate the problem of data inference from a
time-continuous perspective. It pays attention to the conti-
nuity of data changes and is a much closer approximation
of practical MCS problems.

e We introduce DMF which is neural network- enabled
framework for data completion and extend it to RNN-
DMF with a temporal encoder to handle the extreme
matrix sparsity in fine-grained completion.

o We propose TIME-DMF based on RNN-DMF with time
gates to capture temporal information within intervals
and its accompanying Q-G strategy which allows users
to make queries and dynamically generate responses to
achieve time-continuous completion.

o Extensive experiments of five types are conducted step
by step to validate the effectiveness of our methods.

The reminder of this paper is organized as follows. Section
II reviews related works. Section III presents the system model
and the problem formulation. In Section IV, we introduce the
fine-grained completion, which comprises the DMF frame-
work and RNN-DMF model. In Section V, TIME-DMF and its
accompanying Q-G strategy for time-continuous completion
are discussed. We evaluate the performance of our approaches
through extensive experiments in Section VI, followed by the
conclusion in Section VII.

II. RELATED WORK
A. Sparse MCS

Mobile CrowdSensing [1]], [19] is an emerging paradigm
that leverages mobile device users to collect data, enabling a
wide range of services within the Internet of Things ecosystem
[20]-[22]. MCS has been widely used in domains such as
traffic supervision [16]], [23]], pollution control [24], [25]], and
facility management [26]], [27]. Initially, the mainstream algo-
rithms for MCS were based on compressed sensing [[16]] and
its various adaptations [|12[]. However, as these algorithms were
implemented, it became apparent that data collection often
exhibited sparsity [[10] due to cost constraints and limitations
of sensing devices. Consequently, algorithms used for inferring
missing data [28]] gained popularity. In 2016, Wang et al. 3|
provided a comprehensive review of MCS methods based on
sparse sensed data and systematically introduced frameworks
[L1], [13] for data collection and completion. Since then,
Sparse MCS has emerged as an evolving paradigm, with many
innovative algorithms being developed. Primary areas of work
in this field include cell selection [29|, data inference [17]],
[18]] and user privacy protection [30].

In data inference, methods are generally categorized into
two classes: dense-supervised [31]], [32] and sparse-supervised
[15], [17]], [18]]. Dense-supervised methods rely on large
amounts of complete spatiotemporal data for training. Most
Transformer models and their variants, which are powerful
in handling time series, fall under this category. In contrast,
sparse-supervised methods do not require complete spatiotem-
poral data for training and instead rely on capturing correla-
tions within sparsely observed data. Despite their differences,
neither approach considers the continuous nature of time.

B. Spatiotemporal Granularity

The goal of sensing technology is to capture more fine-
grained spatiotemporal information. Initially, this was achieved



by deploying additional sensors [33] to decrease granularity
and improve accuracy at an expensive price. Subsequently,
data inference algorithms [34] emerged as a more cost-
effective alternative, finding widespread application in various
domains such as air monitoring [35]], [36].

In terms of time granularity, there is comparatively less
research on fine-grained or even continuous timeline. Doya
et al. [37] investigated reinforcement learning in continuous
spatiotemporal domains, while Brockwell et al. [38] explored
improvements to the ARMA algorithm on a continuous time-
line. Higuchi et al. [39] and Kidger et al. [40] studied
cases where events are unevenly distributed over time. In
practical applications, Zhu et al. [41]] examined the impact
of non-uniform distribution of customer consumption from
a time-continuous perspective in recommendation systems,
introducing time gates into deep learning models for handling
unequal time intervals between events. Drawing from these
insights, in this paper, we conduct a comprehensive analysis
on reducing the temporal granularity of sensing tasks and aim
to achieve time-continuous completion in Sparse MCS.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

Fig. [T] and Fig. 2] showcase different methods for formulat-
ing real-world spatiotemporal data. The majority of existing
research has relied on the time-discrete approach depicted in
the lower half of Fig. [} which serves as a coarse-grained
approximation of the real world. In this section, we will
begin with the time-discrete formulation and subsequently
introduce our novel time-continuous approach to provide a
deeper understanding of our concept.

In Sparse MCS tasks, our sensing map is divided into N sub-
regions. At moment ¢, a worker submits data of the n — th
sub-region. We use a position vector ¢ € RN and a data
vector yzt) € RY to represent the submission. The position
vector ¢(;y = [0,0,...,1,0...0] indicates the index of the
subarea submitted by the worker. If the submitted data is from
the ¢—th sub-region, the i—th element of c(y) is set to 1, and
all other elements are set to 0. The data vector yz £ indicates
the value of the submitted subarea. The ¢—th element of yE 3
is the submitted value, and other elements of yzi) are set to
meaningless values like 0 or negative numbers.

Assuming that there are M submissions on the entire
timeline, the results of M submissions are organized into
position matrix and data matrix, we have C € RN*Mand
Y’ € RV*M by stacking all the submissions together:

C= [Crlrvcg‘v"' 76}4}7 (D
Y =yl @)
Similarly, Y = [y, y1,--- ,yi,] represents the real values of
each sub-region at each submission time. So we have:
Y=YoC, 3)
where © represents the Hadamard product.
In traditional Sparse MCS tasks, the timeline is evenly

discretized into time units of predefined length, and we no
more distinguish the difference of arriving time of submissions
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Fig. 3: Relationship between DMF and TIME-DMF.

within the same time unit. Suppose that we manually discretize
the given timeline into P time units, we can have our new
matrices C(P) € RN*P and Y(P) ¢ RN*F by putting each
submission into the time unit they locate in and merge all the
submissions within the same unit.

O(D) = [CgD)T’ CgD)Ta e aC%D)TL “4)
Y(D)/ - [ygD)/T’ CéD)/Ta T 7Cg3D)/T]a (5
C;D)vyl(jD)/ = merge(cpo,cp1,~ . ’yzgo’yz/n?' . .), (6)

where ¢, represents the ¢ — th submission arrived within the
p — th time unit and merge(-) represents the merging oper-
ation. Technically, for each subarea, if there is a submission
within the given p—th time unit, the corresponding position in
'P) will be set to one and the submitted value will be filled in
yz(jD)' . If there are multiple values observed for one location,
the final value would be set to the average. By the merging
operation, the sparsity of C”) will be much less than that of
matrix C. After the discretization and merging operation, we
no longer keep the specific arrival time of all submissions and
their intervals but use p —index to represent their arrival time.
Then our task is to infer the missing values in Y (P) to know
the value of each location on the map at each time unit.

Y = f(yn). (7)

However, it is obvious that some temporal information has
been ignored during the discretization and merging process
such as the precise arrival time and the intervals. Inspired
by this observation, we propose a new system model to
reduce information loss during problem modeling phase.
For the M submissions, we use an additional vector T =
[t(1),t(2), -, ()] to represent the accurate arrival time of
each submission and no longer discretize C' and Y’ to C'(P)
and Y (P, What’s more, since in time-continuous completion
each column in the observed matrix represents a specific
moment instead of a period, we not only want to complete the
matrix Y, but also the infinitely many moments that do not
exist in Y. In order to achieve this, we divide the challenging
time-continuous completion task into to two subtasks.

Our first task is to achieve a mapping f(-) only to complete
the matrix Y’ which fully utilizes the temporal information in



T'. This is similar to the time-discrete scenarios.
Y = f(Y). ©)

After that, we want to provide accurate inference for any
moment on the time line. Obviously there are countless values
distributed along the time line, and our solution is to find a
model that can provide accurate responses § € R for any
given time moment ¢.

g =g’ t),t e (to,tn). &)

B. Problem Formulation

Problem [Completion and Generation on Continuous Time-
line]: Given sparse sensed data Y’ and time vector T, we aim
to achieve the following two objectives:

« Identify a mapping f(-) to complete all the unsensed data
in the matrix Y’. The mapping f(-) should adequately
consider the high sparsity of Y/ and the temporal infor-
mation in 7T'.

o Identify a model G(-) to accomplish the completion at
any given time ¢'. y*)’ can be a column in Y” or not.

In this process, the mean square error is used to measure
the quality of the completed and generated data. The following
value should be minimized:

N M
(YY) =) ¥y~ Y.
i g

IV. FINE-GRAINED COMPLETION WITH RNN-DMF

(10)

Fine-grained completion is the first step towards time-
continuous completion. With the insight that we can construct
our spatiotemporal matrix by including each submission in
a unique time unit, we could align with the previous time-
discrete problem setting but eliminate the assumption that data
stays constant within each time unit. We propose Deep Matrix
Factorization (DMF) [17]] as a foundational framework for the
following works. Due to its neural network-enabled structure,
it can be updated by adding modules of different functions. In
fine-grained completion, there is one submission within each
time unit so that we only know the information of one spatial
location, leading to the great reduction of spatial information
within a unit and the extreme sparsity of observation matrix.
In order to solve this problem, we further propose Recurrent
Neural Network-enabled Deep Matrix Factorization (RNN-
DMF) by introducing a temporal encoder into DMF. The
encoder is able to utilize temporal information to compensate
for the loss of spatial information.

A. Deep Matrix Factorization (DMF)

Given a sparse matrix Y, . ., the traditional method is to
take full rank decomposition of the estimated matrix ffmxn
by using the property that the real matrix Y;, ., has the lower
rank and can be decomposed. Assuming that rank(Y) = r,

then the full rank decomposition can be expressed as:
Yinxn :PmXTZan7 (11)

where P is a full rank matrix and Z is a row full rank matrix.
Therefore, any column y; of Y, «, can be expressed as y; =
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Fig. 4: The structure of DMF.

Pz,. In this formula, z; represents the low-rank vector that
fully contains the information of the t—th column of Y, «n,
which is also the {—th moment in real scenarios. P denotes
the projection from the low-rank vectors to the inferred matrix.
Note that Eq. (TT) assumes that the spatiotemporal correlations
between data are linear. To model the widely existing nonlinear
spatiotemporal correlations, DMF was proposed. Similarly, we
use the function f(-) to represent the nonlinear correlations
between space and time.

y=1r(),Y =f(2). 12)

We aim to obtain suitable z and f(-) by fitting them with a
deep neural network (DNN). Specifically, assuming the neural
network consists of K hidden layers, and their parameters are

w2 wh w@ o ) D (13)
b 2 (pM) p2) .. pUO pEFDY (14)

The corresponding activation function set is
R VA ORI O RN O N O NN &)

In the set W*, b*, ¢g*, the (K + 1)th term represents the
parameter or the activation function from the hidden layer K
to its output layer. The nonlinear function is expressed as:

F(z) =gEFD (W EHD o) (K
g(l)(W(l)Z 4 b(l)) ce b(K)) + b(K'H)),
Different from traditional neural networks, the input 2z and the

neural network parameters are both optimizable parameters in
this context. The optimization object is as follows:

(16)

1
min %H(Y'—f(Z))*CH. (17)
In this way, the inferred results can be obtained:
Y = f(2). (18)

The detailed structure of DMF is shown in Fig. ] DMF
is a neural network framework that is already able to handle
basic data completion tasks. However, it is not tailored for
any specific scenarios. By inserting DNN modules of different
functions into DMF, we can further enable DMF to deal with
data of various specific properties.

B. Recurrent Neural Network-enabled Deep Matrix Factoriza-
tion (RNN-DMF)

In each time step, the proposed DMF framework has low-
rank vectors that can be concatenated to form the complete
low-rank representation of spatiotemporal data. While in the
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training process, each low-rank vector is learned separately
and is not visible to each other. This limits the ability of DMF
to fully capture temporal information. However, capturing and
utilizing temporal information is an urgent in fine-grained
completion due to the extreme sparsity of matrices. For this
reason, we further propose Recurrent Neural Network-enabled
Deep Matrix Factorization (RNN-DMF).

Fig. [ shows that RNN-DMF is composed of two key
modules: an upstream RNN-enabled encoder and a down-
stream DMF-like decoder. Unlike DMF, which initializes
low-rank representations randomly, RNN-DMF accounts for
relationships between low-rank vectors. The RNN structure
enables the encoder to generate low-rank representations by
incorporating temporal correlations, sharing parameters U, W,
and V across time steps. The hidden state S; is generated
based on the previous state S;_; and the primary low-rank
vector X at each timestamp.

Sy =f(U- Xy +W-Si_q). (19)

As DMF, Sy and the primary low-rank vector of each step
is randomly initialized and serves as optimizable parameters
during training. The encoded low-rank representation is then
generated by a final projection. This process is similar to what
traditional RNN does.

At this step, we finally have our encoded low-rank vectors
with temporal information integrated. They will then be con-
catenated and decoded, serving as the final completion results.
This is done by the downstream DMF-like decoder:

Z=1z,23, 2 1)
Y = f(2). (22)

It is obvious that RNN-DMF performs strictly superior to
DMF theoretically. This is because DMF generates its low-
rank vectors randomly and independently without consider-
ing temporal correlations. RNN-DMF considers the possible
temporal correlations between low-rank vectors during the
generating process, which is at least better than complete
random. When sensed data is extremely sparse, there is very
limited information for use within each time step, making it
urgently necessary to share information between time steps.
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This explains why RNN-DMF performs significantly better
than DMF, especially on extremely sparse matrices.

V. TIME-CONTINUOUS COMPLETION WITH TIME-DMF

In the previous fine-grained completion, we address the
challenges of the reduction of spatial information and the
extreme sparsity of observation matrices. Based on that,
we can finally introduce the time-continuous completion. In
traditional works and fine-grained completion, the intervals
between submissions are ignored during the discretization
stage. However, in real-life scenarios, users submit data at real
time and the interval between submissions are of great impor-
tance for inference. This oversimplification is also the reason
why traditional time-discrete completion methods cannot fully
capture temporal information.

Intuitively, it is not the absolute arrival time of submissions
but their intervals that matter. The sensing data with a long
period of time interval will vary significantly but the sensing
data at adjacent time may be quite similar. This is the intuition
of Time Gates-enhanced Deep Matrix Factorization (TIME-
DMEF) for our introducing time gates and a more complex
propagation pattern to model the influence of intervals on
correlations between time steps. Furthermore, in fine-grained
scenarios, period is sliced into a finite number of units and
the observation matrix is of fixed size. But from a time-
continuous perspective, data changes continuously and there
are infinitely many states of sensed data in a given period.
In order to characterize data of all states at an acceptable
price, we propose Q-G strategy. It allows users to query
data of any time and leverages the generative ability of
TIME-DMF to dynamically respond. By combining TIME-
DMF and the Q-G strategy, we achieve the ultimate time-
continuous completion. In this section, we will introduce the
details of TIME-DMF and the Q-G strategy. Finally, we will
conclude the complete flow of TIME-DMF algorithm for time-
continuous data completion tasks.

A. Time Gates in TIME-DMF

The inner structure of TIME-DMF is shown in Fig. [
Inspired by [41]], we design two types time gates to manage
a more complex pattern of information propagation. The first



Algorithm 1 Deep Matrix Factorization with Time Gates
(TIME-DMF)

Require: Cnyxar, Y & T = [t1,t2,-- ,tul), ¢ =
[901755;,"' , T ]
Ensure: Y

1: Random Init x;
2: if ¢ §é T then

3: T [ti,to, - ste,ty trgr, o S tus
T < [1’1,252,"' 7$k7x71’k+1;"' ,.’E]W};
CNxM CNX(M—}-l)’ Y](er — Y](/X(M«I»l);
end if

while not convergent do
for (V) to (M) do
2, Cy, Oy« encoder(z®,Cy_1, Cy_1);
10: end for
11: Y « decoder([zT, 2T, - - s 2y)s
12: calculate and reduce ||(Y' —Y) = C|;
13: end while

D A

time gate controls global memory. All data within the observed
time period should follow a certain underlying distribution,
reflecting the overall characteristics of the dataset, such as
the mean or periodicity in real-life scenarios. The second
time gate controls local memory. The distribution of data at
adjacent time shows the local increase/decrease or other short-
term trends. We combine these two memories to ensure the
completion result is rational both globally and locally.

The two kinds of memories are controlled by different
parameters and are updated independently. Intuitively, intervals
determine the correlations between time steps. The shorter the
interval between two time steps, the more similar they are
expected to be. So we utilize intervals to control the update of
memories. If the memories are slightly updated between the
two adjacent time steps, their completion results will be very
similar. Conversely, if the memories have a substantial update,
the following results will greatly defer from the previous ones.
We use the interval as a parameter within each time gates.

Tl = o(xmWer + oae(At, Wi + b1), (23)

T2, = U(ijW$2 + UAt(AthtZ) + b2) (24)
The function of two memories is similar to that of the hidden
state in RNN, which is shown in Eq. (T9).

In TIME-DMF, the global memories and local memories
operate in different manners. The local memory has a more
direct impact on the completion of each step:

ar=fU- X, +W-Cy_1). (25)

The global memory flows more consistently and has a broad
effect on the update of memories. We use the two time gates
calculated formerly to control the update of the two memories.
In this way we make use of the information within intervals.

Cy = fIC; ©@ Ty, +a; © (1 — Tly,)], (26)
Ci = flCt ©T2m +a; © (1 —T2,,)]. 7)

Lastly, as the local memory can better assess the data status
at the current moment, it is converted into an low-rank vector

representing time ¢ through the output gate.
2= f(V-C). (28)

At this point, the upstream encoder has been obtained. The
encoder is capable of doing time-continuous completion as it
can deal with submissions at any given moments. We further
use the DMF-like decoder to map the low-rank representation
to yield the final completion results. Similar to RNN-DMF,
TIME-DMF adopts a joint training method for the upstream
and downstream networks.

B. O-G Strategy

Given a sparse observation matrix, RNN-DMF or TIME-
DMF can infer the missing data. However, unlike previous
methods relying on discrete slicing, in time-continuous sce-
narios, there are infinitely many possible moments on the
timeline. Thus, it is impossible for the prior Submit-Complete
strategy to infer data at all moments. To overcome this chal-
lenge, we propose the Query-Generate strategy which allows
users to query data for any moment within the given period and
dynamically generate the results. To use TIME-DMF for data
generation, we leverage its property of completing data by first
generating low-rank representation. We can insert a randomly
initialized low-rank vector into the previous low-rank repre-
sentation and then proceed with the usual completion process.
The only difference is that the inserted vector does not affect
the backward gradient propagation process.

C. The Complete Flow of TIME-DMF

For a time query provided by the user, we first check if
there is an existing column in the given sparse matrix. If not,
we insert an empty column into matrix Y’ and update the
intervals of its both sides. Concurrently, we insert a column
with all zeros into matrix C to ensure the query won’t affect
existing completion process. We then deploy our encoder
and decoder sequentially to complete the data matrix Y’ and
minimize the loss between the completed data and known
data at observation positions. In this process, the encoder,
decoder and the completed results are continuously updated
by calculating and reducing the optimization objective. The
complete algorithm flow is shown in Alg. [I]

VI. EXPERIMENTAL VALIDATION

In this section, we first introduce the datasets and the
comparison methods. Then we present performance evaluation
of our proposed results. In particular, our experiments can be
divided into the answers to the following research questions:

¢ RQ1: Does our RNN structure offer better completion
performance for extremely sparse matrices?

o RQ2: Do our time gates truly leverage the time interval?

e RQ3: In time-continuous, the model needs to have
additional generative capabilities. How effective is the
generative capability of TIME-DMF?

e RQ4: Even our method achieves time-continuous com-
pletion, is time-continuous completion truly more effec-
tive than time-discrete completion?



TABLE I: Statistics of four evaluation datasets

U-Air Sensor-Scope TaxiSpeed Highway England
City/Country Beijing (China)  Lausanne (Switzerland) Beijing (China) England
Data PM2.5 Humidity Traffic speed People counting
Subarea 36 subareas 57 subareas 100 road segments 15~25 subareas
Cycle & Duration lh & 11d 0.5h & 7d 1h & 4d 0.25h & 0.5~3months
Mean + Std. 79.11 + 81.21 84.52 + 6.32 13.01 £ 6.97 112.42 + 30.54

¢ RQS: In the domain of spatiotemporal data, transformers
seem to have become the mainstream approach. Why do
we choose not to use transformer architectures?

A. Datasets

o U-Air [42] is utilized to gather significant air quality
data, specifically PM2.5 and PM10 levels, via monitoring
stations located in Beijing, China.

« Sensor-Scope [43] is employed to collect a diverse array
of environmental readings through the deployment of
numerous static sensors on the EPFL campus. A rep-
resentative type of sensing, namely humidity, is selected
for evaluation purposes.

o TaxiSpeed [44] gathers traffic speed data pertaining to
road segments in Beijing, China by utilizing GPS devices
installed on taxis.

« Highways England (HE) [45] serves as a resource in
providing information pertaining to travel times, traffic
flow rates, incidents, event data and camera imagery for
England’s major motorways. Due to its large space and
time range, we manually selected spatiotemporal data
from multiple adjacent regions and adjacent time periods,
thus the data size is larger and more flexible.

B. Comparison Methods

1) Comparative models for completion task: Sparse-
supervised methods which only rely on sparse observed data
for training:

e« MC, a classic linear matrix completion method, assumes

a linear relationship ¥ = PZ.

o KNN-S, a variant of the K-Nearest Neighbors algorithm.
KNN-S retrieves information from the K closest sub-
regions to the region to be imputed and uses their average
value as the imputation result.

e GP algorithm, a method that assumes the spatial dis-
tribution of data in the same cycle obeys the Gaussian
distribution. The unknown data are inferred by calculating
the expectation and variance of the known data.

« DMF, which has been introduced previously and also
serves as a basic component of our method.

o STformer [46], a transformer-based model with multiple
designed embedding and attention layers to capture spa-
tiotemporal relationship. STformer is specially designed
to be trained with only sparse observed data.

Dense-supervised methods which rely on complete observed
data to train the model:

o iTransformer [31]], a variant which applies the attention
and feed-forward network on the inverted dimensions.
This is fine-tuned for completion tasks.

o AutoFormer [32], another variant of transformer which
entangles different blocks in the same layers during su-
pernet training.It is also fine-tuned for completion tasks.

2) Comparative Predictive models for generative task:

o LINEAR, which applies the linear regression model to
predict the full map of the future cycles. It assumes that
the sensed data varies linearly over time.

o WNN, which combines wavelet transform and neural
network. WNN is good at extracting periodic features of
time series for data prediction.

o NAR, which uses a nonlinear autoregressive neural net-
work to predict the near future. NAR considers the
nonlinear temporal correlations within data.

C. Completion on Extremely Sparse Data (RQI)

For most sparse data completion tasks, the sensing rate
typically ranges from 20% to 80%, indicating that we can
utilize abundant spatiotemporal information. However, in fine-
grained and time-continuous completion, we have the matrices
with sense ratio of 1/n-columns which traditional methods
may have difficulty handling. To show the effectiveness of
RNN-DMF on extremely sparse data, we compare it with
other existing completion methods on multiple datasets. Note
that the sense ratio is not limited to 1/n-columns to show the
generalization performance of RNN-DMF.

As problem setting, each column of the data matrix repre-
sents a submission, and each row represents a subarea to sense.
To build sparse datasets, we randomly mask the complete
matrix and leave 1—5 data points unmasked in each column to
represent the sensed data. This process is entirely random, as
cell selection strategy is not our focus. For fair comparison, we
use a small amount of complete data to train dense-supervised
methods to ensure that models function properly.

The results in Table [l and Fig. [7 illustrate that RNN-
DMF significantly outperforms existing works. The overall
trend suggests that with the increase of sense ratio, the
completion accuracy of all testing methods rises. This aligns
with intuition as sensed data provides information for missing
data inference. From Table we can clearly see that in
scenarios where data matrix is extremely sparse, our method
surpasses most existing methods. The green error bars in Fig.
also highlight the robustness of our method. This experiment
forms the basis for our work as both fine-grained completion



TABLE II: Full RMSE results under different sparsity on four datasets.

. Sparse-supervised method Dense-supervised method
Dataset Sensed Ratio -
GP knn-s MC DMF RNN-DMF STformer iTransformer Autoformer
1/57 4.3 4.2 3.9 4.7 2.5 6.6 6.1 5.3
2/57 4.1 4.1 2.5 24 2.0 6.5 5.8 52
U-AIR 3/57 3.6 32 2.5 2.0 1.8 5.6 5.0 5.0
4/57 33 33 1.7 1.9 1.7 54 4.7 4.9
5157 32 32 1.6 1.7 1.5 5.0 4.1 4.9
1/36 53.0 55.8 56.5 60.7 43.6 514 74.5 90.4
2/36 54.2 44.6 44.4 46.5 38.5 479 67.8 89.3
Sensor-Scope 3/36 53.0 41.6 38.9 39.3 34.4 35.8 62.2 88.5
4/36 52.5 394 36.9 38.6 34.1 343 57.2 88.1
5/36 50.6 58.2 34.1 37.7 28.8 33.5 53.3 87.2
1/30 39028.1 38252.8 31450.2 10474.5 7632.0 8778.2 8876.7 11921.1
2/30 39990.3 32182.1 28295.3 9859.5 7493.1 7831.3 8691.6 11876.0
TaxiSpeed 3/30 38637.5 29491.2 24141.7 9220.7 7361.5 7283.9 8414.7 9139.1
4/30 36617.3 28337.3 22709.9 7417.5 7241.1 7428.0 8277.5 8984.9
5/30 35991.2 26787.2 21344.1 7012.0 6849.1 6713.5 8139.8 8803.8
1/15 66.5 70.5 66.1 40.7 229 30.7 79.8 52.0
2/15 56.2 60.3 49.6 31.6 18.1 19.2 58.3 51.7
Hishways England 3/15 50.7 53.8 41.6 28.5 17.5 17.6 43.5 51.2
4/15 45.9 49.9 36.9 26.9 15.8 16.2 31.7 42.4
5/15 42.5 52.4 29.8 25.9 14.6 13.0 26.2 37.2
i DMF e STFOrmer === iTransformer ~#—DMF ~—@— STFormer —&— iTransformer i~ DMF @ STFormer = iTransformer ~—#—DMF —&— STFormer —&— iTransformer
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Fig. 7: Partial RMSE results of different data sparsity under different datasets.

and time-completion models deal with scenarios where spatial
information is lacking and the matrix is extremely sparse.

D. Ablation Study on Time Gates (RQ2)

Based on RNN-DMF, we aim to further demonstrate the
effectiveness of time gates which are designed to capture
information within unequal intervals between submissions. We
design an ablation experiment between TIME-DMF, which
incorporates time gates, and RNN-DMF, which does not
incorporate time gates, on multiple datasets.

As most publicly available datasets consist of sensor data
with equal time intervals, we artificially create datasets through
random masking and deletion. In specific, for the complete
data matrix, we randomly remove some columns from the
matrix so that the left columns are of random intervals. For
the columns left, we do random masking again like that in
the last experiment. This preprocessing results in extremely
sparse matrices where the intervals between columns vary in
length. Because of the deletion, the datasets will be much
smaller. So we need datasets of enough columns to make
sure the experiments can have stable results. As Highways
England is a dataset that collects road data per 15 minutes

for years, it provides an ample number of columns for use.
In this experiment we employ this typical dataset to test the
effectiveness of time gates.

The experimental results are shown in Table and Fig.
[B] The x-axis represents the proportion of columns deleted
from the original dataset. When the deletion proportion grows
bigger, the interval between columns will be more uneven and
there will be more temporal information within time intervals
for time gates to capture. In all datasets, as the unevenness of
the data increases, the inference performance of both RNN-
DMF and TIME-DMF decreases. This is because when the
data is uneven, the similarity between adjacent submissions
decreases and it’s hard for encoders to capture direct correla-
tions between submissions. This trend is particularly evident
when the deletion ratio is high. However, compared with
RNN-DMEF, TIME-DMF performs much more stably when the
deletion rate and data unevenness increases. This is because
RNN-DMF can only statically share parameters between time
steps without considering the interval length. While in TIME-
DMF, the global memory and local memory can cooperate
to dynamically control the flow of temporal information.
This propagation pattern better utilizes the information within



TABLE III: RMSE results of the ablation study of time gates.

Slices Deleted Ratio

Slices Deleted Ratio

Dataset Method Dataset Method
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
RNN-DMF 304 340 384 510 752 RNN-DMF 299 325 37.1 417 562
Imonth ——————— 2weeks ————————
TIME-DMF 29.2 29.0 314 325 428 TIME-DMF 323 314 324 343 37.3
RNN-DMF  31.5 347 385 442 587 RNN-DMF 304 339 388 492 814
2months ————— Imonth ———"—
TIME-DMF 328 346 378 37.5 40.7 TIME-DMF 293 316 31.1 334 35.5
RNN-DMF 341 365 408 482 76.6 RNN-DMF 59.2 3.7 69.8 785 115.3
3months ———— ———— 2month —————
TIME-DMF 354 36.0 37.2 38.0 41.2 TIME-DMF 609 649 66.1 664 68.7
Highways England for 2021 Highways England for 2022
— O — we draw in the second experiment. It should be noted that
TIME-DMF| TIME-DMF TIME-DMF. .
7> I RN-oMF I RN-DMF 7| I RNN-DMF generation effect on U-AIR dataset fluctuates greatly under
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Fig. 8: Completion results of two models with the only
difference of time gates.

intervals of different lengths. If we consider RNN-DMF as the
baseline, we observe that TIME-DMF performs better when
other conditions remain unchanged. This directly proves the
effectiveness of time gates in capturing information within
unequal intervals.

E. Demonstration of Generative Capability (RQ3)

Since we account for data continuity, we cannot provide
states for all moments. Instead, we enable our model to
dynamically generate data states based on user requests. In this
experiment, we test the generative capability of TIME-DMF.
Note that existing time-discrete models don’t have generative
needs, so we compare TIME-DMF with series of predictive
models. In order to make the comparison fairer, we just predict
one step ahead in predictive models.

As we construct datasets via random masking and deletion,
and each time we only generate data for a moment (a column
in the matrix), the generation accuracy is highly unstable. For
more persuasive results, we conduct extensive experiments
on different randomly built datasets and depict the findings
in a box plot. From the average height of the boxes in
Fig. [0] we can tell that TIME-DMF provides superior overall
generation accuracy. The comparison between the lengths of
light green boxes and dark green boxes indicates that when the
unevenness of data distribution rises, the overall performance
becomes unstable. This corresponds to the conclusion that

different deletion rates. This is because U-AIR is a rather tiny
dataset, which becomes too small to contain ample temporal
information as the deletion ratio increases. We do not use U-
AIR in our second experiment for the same reason.

F. Comparison between Time-discrete and Time-continuous
completion (RQ4)

In time-discrete scenarios, we reduce matrix sparsity by sac-
rificing accurate submission times, while in time-continuous
scenarios, we use time intervals but face increased sparsity.
After showing that our model can handle high sparsity and
effectively use intervals, we need to prove that time-continuous
completion truly outperforms time-discrete solutions. To test
this, we compare TIME-DMF with time-discrete methods
in their original problem setting. We simulate real MCS
scenarios by constructing submissions with random masking
and deletion from the original datasets. For time-discrete
methods, we divide the timeline into equal slices and merge
data within each slice, while TIME-DMF keeps submissions in
their original state with recorded arrival times. We then apply
various completion methods and compare their accuracy.

After random deletion, the size of datasets will reduce a lot
and completion methods may yield different results on datasets
of varying sizes. To show the universality, we conduct the
experiments on both smaller datasets and larger datasets. In
Fig. [I0] and Fig. [T} moving from left to right, the number of
columns in the datasets increases.

As shown in Table [IV] Fig. [I0] and Fig. [[T} TIME-DMF
(which is a time-continuous completion method) significantly
outperforms the traditional methods (which are all time-
discrete methods). While incorporating the continuous change
of data does present new challenges such as extreme sparsity
and interval handling, it is still a better model of the real
scenarios if we could utilize temporal information to the
maximum. When comparing the completion effects on smaller
datasets and bigger ones, the performance on bigger datasets
is better. This can be explained as the combination of global
memories and local memories can be fully useful in the long
term data distribution. While in smaller datasets, the design of
global memory and local memory may seem to be unnecessary.

Previous studies used merged data as the ground truth
for model training, leading to significant deviations between
experimental and real results, which caused their models to be
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TABLE IV: Direct comparison of time-

Fig. 11: RMSE for large datasets.

continuous and time-discrete methods.

Dataset Sparse-supervised Methods Dense-supervised Methods
GP KNN-S MC DMF TIME-DMF STformer iTransformer Autoformer

U-AIR 14.0 40.4 49.7 50.6 12.6 13.7 8.8 10.2
Sensor-Scope 105.7 93.0 96.9 103.3 84.8 80.2 84.4 90.2

TaxiSpeed 33213.7 26283.4 23232.2 13129.9 8822.4 10068.7 10337.1 10748.0
Hishways England A 66.5 70.5 66.1 71.5 229 27.3 47.6 42.6
Hishways England B 146.7 129.6 89.1 82.9 39.6 47.0 79.5 54.0
Hishways England C 207.7 182.0 109.6 124.1 4.5 50.8 100.2 103.4

TABLE V: Training condition, speed and parameter count.

Time-DMF iTransformer Autoformer STformer
Only Sparse-supervised v x x v
Parameter Count 9k 51k 56k 11M
Training Time / Epoch 18ms 58ms 66ms 400ms

misestimated. By evaluating the model in a way that is closer
to real-world problems, we demonstrate that TIME-DMF’s
advanced time-continuous completion is a superior solution
for real-world MCS applications.

G. Model Parameter Comparison (RQ5)

Transformer architecture has been a popular solution in
time series modeling. We chose LSTM over the Transformer
architecture by considering training conditions, parameter
count, and speed. Fine-tuned Transformer models for comple-
tion tasks often require complete historical data for training,
which is unavailable in typical MCS scenarios, making dense-
supervised methods difficult to train effectively. Additionally,
edge computing devices are sensitive to computational re-
sources, so model size and training speed are critical. As
shown in Table [Vl TIME-DMF does not need extensive
historical data and has a more compact parameter setting.

Given that MCS tasks focus on specific data resources and
don’t require broad generalization, we find LSTM to be a more
efficient and suitable choice compared to Transformers.

VII. CONCLUSION

In this paper, we propose a time-continuous completion
method called TIME-DMF to challenge a widely existing
assumption in Sparse MCS that data stays constant within peri-
ods and finally increase data completion accuracy to a great ex-
tent. TIME-DMF is based on DMF which is a neural network-
enabled framework for traditional data completion. Based on
that, TIME-DMF is further inserted with a temporal encoder
that has the function of passing temporal information between
time steps and utilizing the intervals of different lengths. To
pass temporal information, we imitate the structure of RNN
to generate appropriate embedding vectors. For utilizing the
temporal information within intervals, we design the global
memory to control the overall property of data distribution
and the global memory to control local trend. The length of
interval serves as a parameter to monitor the memory updating
process. TIME-DMF is used in cooperation with the Q-G
strategy which allows users to query and then dynamically
generate responses. Finally, we do extensive experiments on
real-world datasets to prove the effectiveness of our models.
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